Symbolic and Iterative Computation of Quasi-Filiform Nilpotent Lie Algebras of Dimension Nine
نویسندگان
چکیده
This paper addresses the problem of computing the family of two-filiform Lie algebra laws of dimension nine using three Lie algebra properties converted into matrix form properties: Jacobi identity, nilpotence and quasi-filiform property. The interest in this family is broad, both within the academic community and the industrial engineering community, since nilpotent Lie algebras are applied in traditional mechanical dynamic problems and current scientific disciplines. The conditions of being quasi-filiform and nilpotent are applied carefully and in several stages, and appropriate changes of the basis are achieved in an iterative and interactive process of simplification. This has been implemented by means of the development of more than thirty Maple modules. The process has led from the first family formulation, with 64 parameters and 215 constraints, to a family of 16 parameters and 17 constraints. This structure theorem permits the exhaustive classification of the quasi-filiform nilpotent Lie algebras of dimension nine with current computational methodologies.
منابع مشابه
Solvable Lie algebras with $N(R_n,m,r)$ nilradical
In this paper, we classify the indecomposable non-nilpotent solvable Lie algebras with $N(R_n,m,r)$ nilradical,by using the derivation algebra and the automorphism group of $N(R_n,m,r)$.We also prove that these solvable Lie algebras are complete and unique, up to isomorphism.
متن کاملBounds for the dimension of the $c$-nilpotent multiplier of a pair of Lie algebras
In this paper, we study the Neumann boundary value problem of a class of nonlinear divergence type diffusion equations. By a priori estimates, difference and variation techniques, we establish the existence and uniqueness of weak solutions of this problem.
متن کاملOn dimension of a special subalgebra of derivations of nilpotent Lie algebras
Let $L$ be a Lie algebra, $mathrm{Der}(L)$ be the set of all derivations of $L$ and $mathrm{Der}_c(L)$ denote the set of all derivations $alphainmathrm{Der}(L)$ for which $alpha(x)in [x,L]:={[x,y]vert yin L}$ for all $xin L$. We obtain an upper bound for dimension of $mathrm{Der}_c(L)$ of the finite dimensional nilpotent Lie algebra $L$ over algebraically closed fields. Also, we classi...
متن کاملAffine Cohomology Classes for Filiform Lie Algebras
We classify the cohomology spaces H(g,K) for all filiform nilpotent Lie algebras of dimension n ≤ 11 over K and for certain classes of algebras of dimension n ≥ 12. The result is applied to the determination of affine cohomology classes [ω] ∈ H(g,K). We prove the general result that the existence of an affine cohomology class implies an affine structure of canonical type on g, hence a canonical...
متن کاملDegenerations of nilpotent Lie algebras
In this paper we study degenerations of nilpotent Lie algebras. If λ, μ are two points in the variety of nilpotent Lie algebras, then λ is said to degenerate to μ , λ→deg μ , if μ lies in the Zariski closure of the orbit of λ . It is known that all degenerations of nilpotent Lie algebras of dimension n < 7 can be realized via a one-parameter subgroup. We construct degenerations between characte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Symmetry
دوره 7 شماره
صفحات -
تاریخ انتشار 2015